Multi-Agent Orchestration Methods
Swarms provides a comprehensive suite of orchestration methods for coordinating multiple AI agents in structured conversations and decision-making processes. These methods enable sophisticated multi-agent interactions like debates, panel discussions, negotiations, and more.
Overview
| Method | 
Orchestration Description | 
Use Case | 
| OneOnOneDebate | 
Turn-based debates between two agents. Structured debates where two agents alternate turns presenting arguments. | 
Philosophical discussions, arguments | 
| ExpertPanelDiscussion | 
Expert panel discussions with a moderator. Multiple experts discuss topics, guided by a moderator. | 
Professional discussions, expert opinions | 
| RoundTableDiscussion | 
Round table discussions with multiple participants. Open discussions among several agents, each contributing equally. | 
Group discussions, brainstorming | 
| InterviewSeries | 
Structured interviews with follow-up questions. One agent interviews another, with dynamic follow-up questions. | 
Q&A sessions, information gathering | 
| PeerReviewProcess | 
Academic peer review processes. Simulated academic review, where agents critique and provide feedback. | 
Research review, feedback processes | 
| MediationSession | 
Mediation sessions for conflict resolution. Agents participate in sessions to resolve disputes, often with a mediator. | 
Dispute resolution, negotiations | 
| BrainstormingSession | 
Brainstorming sessions for idea generation. Collaborative sessions focused on generating new ideas. | 
Innovation, problem solving | 
| TrialSimulation | 
Trial simulations with legal roles. Agents assume legal roles to simulate a courtroom trial. | 
Legal proceedings, case analysis | 
| CouncilMeeting | 
Council meetings with voting procedures. Decision-making meetings where agents vote on proposals. | 
Governance, voting processes | 
| MentorshipSession | 
Mentorship sessions with feedback loops. One or more agents mentor others, providing feedback and guidance. | 
Learning, guidance | 
| NegotiationSession | 
Complex negotiations between parties. Multi-party negotiations to reach agreements or resolve conflicts. | 
Business deals, agreements | 
OneOnOneDebate
Description
Simulates a turn-based debate between two agents for a specified number of loops. Each agent takes turns responding to the other's arguments.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| max_loops | 
int | 
Number of conversational turns | 
No | 
1 | 
| agents | 
List[Agent] | 
Two agents for debate | 
Yes | 
None | 
| img | 
str | 
Optional image input | 
No | 
None | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes debate between agents | 
Example
Full example: Philosophy Discussion Example
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import OneOnOneDebate
# Create debating agents
agent1 = Agent(name="Philosopher1")
agent2 = Agent(name="Philosopher2")
# Initialize debate
debate = OneOnOneDebate(
    max_loops=3,
    agents=[agent1, agent2]
)
# Run debate
result = debate.run("Is artificial intelligence consciousness possible?")
 
ExpertPanelDiscussion
Description
Simulates an expert panel discussion with a moderator guiding the conversation. Multiple experts provide insights on a topic with structured rounds.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| max_rounds | 
int | 
Number of discussion rounds | 
No | 
3 | 
| agents | 
List[Agent] | 
Expert panel participants | 
Yes | 
None | 
| moderator | 
Agent | 
Discussion moderator | 
Yes | 
None | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes panel discussion | 
Example
Full example: Healthcare Panel Discussion
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import ExpertPanelDiscussion
# Create expert agents
moderator = Agent(name="Moderator")
expert1 = Agent(name="AI_Expert")
expert2 = Agent(name="Ethics_Expert")
expert3 = Agent(name="Neuroscience_Expert")
# Initialize panel
panel = ExpertPanelDiscussion(
    max_rounds=2,
    agents=[expert1, expert2, expert3],
    moderator=moderator
)
# Run panel discussion
result = panel.run("What are the ethical implications of AGI development?")
 
RoundTableDiscussion
Description
Simulates a round table where each participant speaks in order, then the cycle repeats. Facilitated discussion with equal participation.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| max_cycles | 
int | 
Number of speaking cycles | 
No | 
2 | 
| agents | 
List[Agent] | 
Round table participants | 
Yes | 
None | 
| facilitator | 
Agent | 
Discussion facilitator | 
Yes | 
None | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes round table discussion | 
Example
Full example: AI Ethics Debate
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import RoundTableDiscussion
# Create participants
facilitator = Agent(name="Facilitator")
participant1 = Agent(name="Participant1")
participant2 = Agent(name="Participant2")
participant3 = Agent(name="Participant3")
# Initialize round table
roundtable = RoundTableDiscussion(
    max_cycles=2,
    agents=[participant1, participant2, participant3],
    facilitator=facilitator
)
# Run discussion
result = roundtable.run("How can we improve renewable energy adoption?")
 
InterviewSeries
Description
Conducts a structured interview with follow-up questions. Systematic Q&A with depth through follow-up questions.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| questions | 
List[str] | 
Prepared interview questions | 
No | 
Default questions | 
| interviewer | 
Agent | 
Interviewer agent | 
Yes | 
None | 
| interviewee | 
Agent | 
Interviewee agent | 
Yes | 
None | 
| follow_up_depth | 
int | 
Follow-up questions per main question | 
No | 
2 | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes interview series | 
Example
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import InterviewSeries
# Create agents
interviewer = Agent(name="Interviewer")
interviewee = Agent(name="Expert")
# Prepare questions
questions = [
    "What is your background in AI?",
    "How do you see AI evolving in the next decade?",
    "What are the biggest challenges in AI development?"
]
# Initialize interview
interview = InterviewSeries(
    questions=questions,
    interviewer=interviewer,
    interviewee=interviewee,
    follow_up_depth=2
)
# Run interview
result = interview.run("AI Development and Future Prospects")
 
PeerReviewProcess
Description
Simulates academic peer review with multiple reviewers and author responses. Structured feedback and revision process.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| reviewers | 
List[Agent] | 
Reviewer agents | 
Yes | 
None | 
| author | 
Agent | 
Author agent | 
Yes | 
None | 
| review_rounds | 
int | 
Number of review rounds | 
No | 
2 | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes peer review process | 
Example
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import PeerReviewProcess
# Create agents
author = Agent(name="Author")
reviewer1 = Agent(name="Reviewer1")
reviewer2 = Agent(name="Reviewer2")
# Initialize peer review
review = PeerReviewProcess(
    reviewers=[reviewer1, reviewer2],
    author=author,
    review_rounds=2
)
# Run review process
result = review.run("New Machine Learning Algorithm for Natural Language Processing")
 
Description
Simulates a mediation session to resolve conflicts between parties. Facilitated conflict resolution with structured sessions.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| parties | 
List[Agent] | 
Disputing parties | 
Yes | 
None | 
| mediator | 
Agent | 
Mediator agent | 
Yes | 
None | 
| max_sessions | 
int | 
Number of mediation sessions | 
No | 
3 | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes mediation session | 
Example
Full example: Merger Mediation Session
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import MediationSession
# Create agents
mediator = Agent(name="Mediator")
party1 = Agent(name="Party1")
party2 = Agent(name="Party2")
# Initialize mediation
mediation = MediationSession(
    parties=[party1, party2],
    mediator=mediator,
    max_sessions=3
)
# Run mediation
result = mediation.run("Resolve intellectual property dispute")
 
BrainstormingSession
Description
Simulates a brainstorming session where participants build on each other's ideas. Creative idea generation with collaborative building.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| participants | 
List[Agent] | 
Brainstorming participants | 
Yes | 
None | 
| facilitator | 
Agent | 
Session facilitator | 
Yes | 
None | 
| idea_rounds | 
int | 
Number of idea generation rounds | 
No | 
3 | 
| build_on_ideas | 
bool | 
Whether to build on previous ideas | 
No | 
True | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes brainstorming session | 
Example
Full example: Pharma Research Brainstorm
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import BrainstormingSession
# Create agents
facilitator = Agent(name="Facilitator")
participant1 = Agent(name="Creative1")
participant2 = Agent(name="Creative2")
participant3 = Agent(name="Creative3")
# Initialize brainstorming
brainstorm = BrainstormingSession(
    participants=[participant1, participant2, participant3],
    facilitator=facilitator,
    idea_rounds=3,
    build_on_ideas=True
)
# Run brainstorming
result = brainstorm.run("Innovative solutions for urban transportation")
 
TrialSimulation
Description
Simulates a legal trial with structured phases and roles. Complete legal proceeding simulation with all participants.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| prosecution | 
Agent | 
Prosecution attorney | 
Yes | 
None | 
| defense | 
Agent | 
Defense attorney | 
Yes | 
None | 
| judge | 
Agent | 
Trial judge | 
Yes | 
None | 
| witnesses | 
List[Agent] | 
Trial witnesses | 
No | 
None | 
| phases | 
List[str] | 
Trial phases | 
No | 
Default phases | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes trial simulation | 
Example
Full example: Medical Malpractice Trial
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import TrialSimulation
# Create agents
judge = Agent(name="Judge")
prosecutor = Agent(name="Prosecutor")
defense = Agent(name="Defense")
witness1 = Agent(name="Witness1")
witness2 = Agent(name="Witness2")
# Initialize trial
trial = TrialSimulation(
    prosecution=prosecutor,
    defense=defense,
    judge=judge,
    witnesses=[witness1, witness2],
    phases=["opening", "testimony", "cross", "closing"]
)
# Run trial
result = trial.run("Patent infringement case")
 
CouncilMeeting
Description
Simulates a council meeting with structured discussion and decision-making. Governance process with voting and consensus building.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| council_members | 
List[Agent] | 
Council participants | 
Yes | 
None | 
| chairperson | 
Agent | 
Meeting chairperson | 
Yes | 
None | 
| voting_rounds | 
int | 
Number of voting rounds | 
No | 
1 | 
| require_consensus | 
bool | 
Whether consensus is required | 
No | 
False | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes council meeting | 
Example
Full example: Investment Council Meeting
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import CouncilMeeting
# Create agents
chairperson = Agent(name="Chair")
member1 = Agent(name="Member1")
member2 = Agent(name="Member2")
member3 = Agent(name="Member3")
# Initialize council meeting
council = CouncilMeeting(
    council_members=[member1, member2, member3],
    chairperson=chairperson,
    voting_rounds=2,
    require_consensus=True
)
# Run meeting
result = council.run("Vote on new environmental policy")
 
MentorshipSession
Description
Simulates a mentorship session with structured learning and feedback. Guided learning process with progress tracking.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| mentor | 
Agent | 
Mentor agent | 
Yes | 
None | 
| mentee | 
Agent | 
Mentee agent | 
Yes | 
None | 
| session_count | 
int | 
Number of sessions | 
No | 
3 | 
| include_feedback | 
bool | 
Whether to include feedback | 
No | 
True | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes mentorship session | 
Example
Full example: Startup Mentorship Program
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import MentorshipSession
# Create agents
mentor = Agent(name="Mentor")
mentee = Agent(name="Mentee")
# Initialize mentorship
mentorship = MentorshipSession(
    mentor=mentor,
    mentee=mentee,
    session_count=3,
    include_feedback=True
)
# Run session
result = mentorship.run("Career development in AI research")
 
NegotiationSession
Description
Simulates a negotiation with multiple parties working toward agreement. Complex multi-party negotiation with concessions.
Parameters
| Parameter | 
Type | 
Description | 
Required | 
Default | 
| parties | 
List[Agent] | 
Negotiating parties | 
Yes | 
None | 
| mediator | 
Agent | 
Negotiation mediator | 
Yes | 
None | 
| negotiation_rounds | 
int | 
Number of rounds | 
No | 
5 | 
| include_concessions | 
bool | 
Whether to allow concessions | 
No | 
True | 
| output_type | 
str | 
Format for conversation history | 
No | 
"str-all-except-first" | 
Run Method
| Method | 
Parameters | 
Returns | 
Description | 
| run | 
task: str | 
list | 
Executes negotiation session | 
Example
Full example: NVIDIA-AMD Executive Negotiation
from swarms.agents import Agent
from swarms.structs.multi_agent_debates import NegotiationSession
# Create agents
mediator = Agent(name="Mediator")
party1 = Agent(name="Company1")
party2 = Agent(name="Company2")
# Initialize negotiation
negotiation = NegotiationSession(
    parties=[party1, party2],
    mediator=mediator,
    negotiation_rounds=4,
    include_concessions=True
)
# Run negotiation
result = negotiation.run("Merger terms negotiation")
 
Conclusion
The multi-agent orchestration methods in Swarms provide powerful frameworks for structuring complex interactions between AI agents. Key benefits include:
- Structured Communication: Each method provides a clear framework for organizing multi-agent interactions
 
- Role-Based Interactions: Agents can take on specific roles with defined responsibilities
 
- Flexible Configuration: Customizable parameters for controlling interaction flow
 
- Scalable Architecture: Support for various numbers of participants and interaction rounds
 
- Comprehensive Coverage: Methods for different use cases from debates to negotiations
 
- Professional Output: Consistent formatting and organization of conversation history
 
- Easy Integration: Simple API for incorporating into larger applications