Agent with DeepSeek¶
- 
Add your
DEEPSEEK_API_KEYin the.envfile - 
Select your model_name like
deepseek/deepseek-chatfollows LiteLLM conventions - 
Execute your agent!
 
from swarms import Agent
import os
from dotenv import load_dotenv
load_dotenv()
# Initialize the agent with ChromaDB memory
agent = Agent(
    agent_name="Financial-Analysis-Agent",
    model_name="deepseek/deepseek-chat",
    system_prompt="Agent system prompt here",
    agent_description="Agent performs financial analysis.",
)
# Run a query
agent.run("What are the components of a startup's stock incentive equity plan?")
R1¶
This is a simple example of how to use the DeepSeek Reasoner model otherwise known as R1.
import os
from swarms import Agent
from dotenv import load_dotenv
load_dotenv()
# Initialize the agent with ChromaDB memory
agent = Agent(
    agent_name="Financial-Analysis-Agent",
    model_name="deepseek/deepseek-reasoner",
    system_prompt="Agent system prompt here",
    agent_description="Agent performs financial analysis.",
)
# Run a query
agent.run("What are the components of a startup's stock incentive equity plan?")